POLYHEDRA® ACTIVE QUERIES

How Polyhedra’s active guery mechanism
Improves the performance of real-time
applications

Contents
F Y 011 = Lo ST PP P PP PPPTPPPPP 1
Background — the need for a NEW @PPrOaCh...cccccccciiiieeeee e —————
Why use a DBMS in a real-time appliCatiONc.ooiii oo e s r e e e e e e e e e e e e e 2
The need for liVe INFOIMEALIONvvii e 2
Three traditional approaches to database MONItOLING..........ccccvvviiiiiiiiiiiireee e e e e e e 3
An alternative approach: ACHVE QUETIES ... uuummmreeteeeeeeeeieiiis ittt e e eeeeeaaesessassaaasnarrar e aaerrererraaaaaaeaaeeens
Efficient server-side handling Of ACHVE QUETIESau .. .uueeeiieiieeiie ettt e e
Detecting Changes CREAPIY et e et e et e e e e e e e e e e e e e e e e e e annnnes 5.
Coping When thiNgS gEt DUSY ...ttt e e et e e e e e e e e e e e e e e e e e e e annnnenes 5.
Optimistic Concurrency through ACtIVE QUEIIESuuiiiiiiiiiiiiiiei ettt e e e e e
[[o] aT1 (o] gTaTe It g L= a Te] o) (o] =TSRRI 6
1070] 4 [od 011 T] o F OO PP PO UPPPPRPPO 7
Appendix 1: a worked example, USING ODBC.... o eeiiiiiiiiiiiiiiiiiieeieere e e eeaaeeesasasannersrarsrrerrrereaaaaaeaaaesans
LAYz U101 o (0] ol i F= U o =P EEEEPRRRN 10
L= To EST=T (=T ox 11 = S 10
g ade] LT o = T Tr=Tox 11V o 10T o PERR 12

Abstract

If many clients each have to continually poll aatgtse to determine the up-to-date state of thenaftion it
needs, the database can become overloaded ori¢hesalill have to reduce their poll frequency dahus
resign themselves to higher latency on the infoilonatTo avoid these problems, Polyhedra allowsntdi¢o
launch active queries, where the client is autorallyi updated should the results of their querieshanged.
This improves the timeliness of the data seen byclient and improves the scalability of the system

ENEA

Background — the need for a new approach

Why use a DBMS in a real-time application

All but the simplest real-time applications areitspito a number of software components to makedsi
manageable and to allow different people or teambet working on the application at the same timechE
component will be responsible for a separate job eommunicating with other components via defined
interfaces. The data-handling needs of each cormpomill differ, but in general some data will hat@ be
shared between components, and some data will mede carefully preserved to guard against padial
complete system failure; there may or may not bewamlap between these categories. (Thus, somedkdarta
might be transitory by nature, whereas configuratidormation will need to be shared and presejved.

Traditionally, one component might act as the ‘datmager’ for the application, mediating accesthéodata
and ensuring the critical stuff is preserved; whegreed was important, this data manager componauitvbe
developed specifically for the application — busthan be complex, and it can be simpler to usatabdse
management system designed for real-time workfadh the main reason for adopting commercial datab
technology is the same as that for adopting any £Q@dmmon_df-the-self) technology: cost. This shows up
in many aspects, including reduced risk, reduceetldpment time, reduced maintenance costs, andrfewe
specialist skills needed in the development teamwith all COTS technology, the emphasis must la¢ tine
chosen product is appropriate to one’s needs, wibercosts will actually increase rather than deseeIn order
to keep the footprint down and performance up.aitime COTS DBMS will be more light-weight tharfdl,
general-purpose DBMS, but will still offer benefgsich as transactions, data isolation, data pensist and
industry-standards APIs (such as SQL, ODBC and JD&Owell as hot-standby capabilities to guard regjai
partial system failure, and the ability to adapt ttatabase structure on the fly to cope with chapgeeds.

... West Service Area

The need for live information

Consider first a SCADA system, controlling (say) a factory or electric
distribution network. Sensors are feeding back irggdto the central system
and operators can see what is happening via ‘miig@igrams’. The question]
arises, how are the mimic diagrams kept up to dates the responsibility lie ; ud G (IR B
with the components that are obtaining the readfry® the sensors, or thg
data management component?

Next, consider a base station in a telecoms systémline cards

| will need to obtain configuration from somewherather than
Workstation each card having storage capabilities, it is easkiekeep the

for
oot information in cards in the control plane — prefidyain a fault-
tolerant fashion. External workstations would béeaio change
the information, but will have no network conneatitw the line
cards and thus would have no direct way of infogrtimem about
updates. In a similar fashion, line cards woule Itk make sure
administrative workstations could determine th&itiss.

! SCADA stands fosupervisory control and data acquisitiol generally refers to industrial control systems
computer systems that monitor and control industii#rastructure, or facility-based processes. $ae

Wikipedia article for more details: http://en.wilkigia.org/wiki/'SCADA

A final example: in a financial system, the databasuld hold information about the most recentslpaices of
stocks, shares or other ‘financial instrumentdwaing traders to monitor their favourite sharesdal time.

In both the above scenarios, there is a general foea low-cost mechanism that allows componemtset able
to determine when the data in which they are isterkis changed ‘under their feet’ by other comptsef the
system.

Three traditional approaches to database monitoring

Polling

Notionally the simplest way for an application ®tect changes is for it to periodically query tla¢adstore, and
then compare the results with the previously-re&ikbvalues. This requires no special mechanisniserdata
store, or in application(s) which are feeding chemigto the data store. However, it can imposevaeredoad on
the data store module, as if an application needsow about a change within a short interval 8430" of a
second if merely updating a screen, or 1/fb60less if the application needs to take mitiggtction — then it
has to launch queries with that frequency. It adds to the workload of the client application,italbas to
analyse the response to see what — if anythings—changed. In addition, if the data store and gp@ieation
needing the data are on separate machines, thenethwrk traffic can be significant. In summary,lafiv
latency is required the overheads of use polling lsigh — and there can be catastrophic degradation
performance at times of peak activity or when tlystem is expanded sufficiently to cause an overload
condition.

External notification mechanisms

Polling can be thought of as a ‘passive pull’ tealbgy. An alternative is a ‘push’ notification sche, where
the component that first detects the change isoressple for notifying any other component that reeéul be
told. The component publishing the information edthher know who needs to be informed at design ,tione
there can be a more dynamic (and probably morerggripublish and subscribe’ system, with API cdits
registering interest in an event and for askingifdormation to be sent to the parties who hadsteged to
receive information.

The problem with tailored push mechanisms — whieeeatriginator/detector of an event tells concempadies
about changes that are relevant to the recipieitih@ut telling them about irrelevant changes) thi it can be
significant effort to adapt to changing requirenseduring the development phase and beyond. A generi
publish & subscribe mechanism avoids this probleuat,may not offer sufficiently fine granularity aray not
allow precisely the right information to be supdli@hus, the listener might just get a notificattbat a value
associated with a datum point has changed, andhaag to find out for itself whether it is a poirftinterest,
and if so what is the current value. Even if thélisl and subscribe mechanism avoids these problestsl
complicates the job of the component publishing itifermation as it is responsible both for puttitige
information into the database (for long term steragay, or to be available to components that areumning

or that do not need immediate notification) andifidtiating the notification process to subscribers

Database triggers

Some database systems allow code to be attachedidtabase, which is triggered on an event. Noymiile
trigger code will be written by the database adstrator using PL/SQL or in a DBMS-specific triggenguage
such as Polyhedra’s CL language, and the role etriggers is either to perform some integrity dtsetand
aborting the transaction if the conditions are met), or to do some ‘knock-on’ actions. The intggdhecks
can be as simple as ensuring particular attriboftélse changed records are within a range diremtliypdirectly
defined by other fields in the record, or can be&mmore complex. Thus, in a telecoms applicationattempt

ENEA

to create a record for a new connection might eted if either of the endpoints are flagged @ade a call
— if, however, the new connection is permissitiie, trigger on the connection table can set thesfladicating
that the two endpoints are in a call. (A separagger would clear these flags when the conneatémord is
deleted.)

The uses described above require the trigger anthe t
run within the transaction that activated it (eithe the ||{EEEN WA o[BI K=F G (o) Mo 17 Wi Tg L=t [V I=1gl
triggering event is performed, or with other triwda ACID is a commonly-used abbreviation for Atomic,
code at the end of the transaction), and obey GDA Consistent, Isolated and Durable, relating to desirable

- - . properties of data management systems that group
properties (see panel to nght)_. In particular, t operations into transactions:
tl’lggered COde Sh0u|d haVe no S|de'effects tha[]((ﬂa ¢ Atomic —Transactions are a||.0r.n0thing_the
be rolled back, should the transactions fail. Hus t system never does just part of what is asked.
reason, one should treat with great caution d » Consistent —Transactions take the system from
management systems that allow code written in C one tcons'sfem Stt‘f"te :ﬁ t"’;)”"thketrh_thel SR
C++ to be called within transactions, as atomic ek S Y ransations o dreaitie Thes.

) at Isolated —Transactions operate independently,

cannot be enforced by the system. However, it ist®K as though fully serialized, with intermediate, mid-
run such code post-transactionally as the server transaction states hidden.

cancel the triggers prior to execution if the teet®n is Durable i &' database = indicates that® a
rolled back transaction has successfully completed, the

application can rely on the changes being

preserved - even through a variety of system
Where a data management system allows pc failure scenarios

transactional triggers, such triggers can be USEd ||y R e A e R (e T R L
knock-on actions that take too long to be donehim {|EREReINRAEWRe R Tl Rl Rie RN EICNERV]
original transaction — but they can also be use@v¥ent transactions. i))
reporing: either the database administrator canGor (NIRRT Aoy
C++ code to hook in to a generic publish and sl c I N TR T R T R PR R
mechanism (as described in the previous subsecton){EReeulnlaRES e EIR EIEES =

the data management system can have its own ink
notification mechanism.

Reporting events in this way has the advantagethigatlient applications generating the updateg bave to

tell the database; their job is simplified, and,aasentral component is taking responsibility foe job of
notification, overall system correctness is impihvdHowever, as with the use of a generic notiftcasystem
described in the previous subsection, it is diffita ensure the granularity of the notificatiosssiufficiently
fine; in addition, those told about the events wpibbably need to query the database and work aut f
themselves what has changed. There is also a mamte problem, as those who are designing client
applications will have to ensure (probably by keisvith the database design team, if they are theanes that
can add triggers) that suitable events are gemkfatetheir needs — and these events are updatddleted if
and when their needs change.

In some systems, there will also be a problem waétburity. Most database systems provide some $oiter-
based controls that can be used to determine (dowhe level of individual columns of a table) wtan view
and update the contents of the database. In embesidtems, such controls are often used in a aded
manner, restricting what can be done by individuahponents, and thus limit the damage should a oot
go wrong, but they may also be used to stop pedipt®vering operational information that they ao¢ entitled
to know about. If user-written code can registebéonotified about particular types of events, theople may
be able to make inferences about data that thelgd emd directly query the database about.

ENEA

An alternative approach: Active Queries

In Polyhedra, SQL queries from a client can beicstat ‘active’. Active Queries provide automatidecit
notification of changes in the database in reaétidctive queries are launched in a similar mariaaerormal
(‘static’) queries, except that the database id tbe queries are ongoing. The client receivesrtiial set of
results, but instead of forgetting about the quérg, server remembers it (until it is cancelledthy client, or
the client connection is closed or lost). Wheneber database changes in a way that affects they,gine
server notices, and sends a ‘delta’ message tditd.

A delta tells the client enough information to loyiih up to date. Thus, it will report added rows|eded rows
and changes to individual rows: for changed rowvdpées not send the whole row contents, just thevakies
that changed. Consequently, efficient use is mddiéne network bandwidth, when client and server amne
separate machines. In addition, the job of thentlgplication is greatly simplified:

» ltis informed when updates occur, with low latenoy need to poll

e If it was just told a change had occurred, it woléd/e to reissue the query to find the new values —
and then, depending on the application, it mightehto analyse the results to find out what had
changed. By contrast, Polyhedra’s active query mmisims avoid the need to reissue the query, and
the client libraries let the application zoom intbe changes.

Once launched, active queries continue until cldsethe client, or the client connection is closedthe query
becomes invalid — for example, if the table is g though adding a column to table only invabdat query
if the client had used ‘select * rather than sfpgog the columns of interest.

Efficient server-side handling of Active Queries

Detecting changes cheaply

Conceptually, at the end of every query the sechiecks to see what active queries are affectetidbghianges
that have been done, so that it can work out wbies need to be sent deltas. Of course, to deeitltiat would

be grossly inefficient, so instead the active queEge running within the server makes use of egrain event
triggering mechanism provided by the core datalesggne. This allows the active query mechanisngimie

irrelevant changes:

» the presence of an active query does not affecpénrmance of other queries, nor the performance
of transactions that do not alter the table(s) tooed by the active query;

e active queries on single objects (identified byirtipeimary key) have no affect on the performan€e o
transactions that do not modify the monitored disjeand,

« the affect on the performance of a transactiondbat alter data being monitored by an active gisery
very low, as the work of updating the client is dqrost-transactionally in a separate thread.

Coping when things get busy

Suppose values are changing rapidly, and the sliganinot keep up with the changes. One exampleriscess
control application, where sensor values are be#ag (through Analog-to-Digital Converters, or ‘ABTas
frequently as possible and the results fed intoddt@abase: a characteristic of high-sensitivity AD€that two
consecutive readings are rarely the same, evemeifirtput value seems stable. You may then havehgrap
devices or control room ‘mimic diagrams’ being fadurn from the database, and the network mayusy lor

the client machine may not be able to handle thekivad.

To cope with such situations, if the client is rimgnslowly and cannot keep up with the stream dfade the
server will start to ‘merge deltas’. Thus, cliem#l not be told every change, but will be keptugsto date as
possible without slowing down the system. This nse#imt the system is responsive even in peak load
conditions, and copes well with crashed client Eagtibns.

In fact, clients can take advantage of the delteging mechanism to further reduce the load on ylstesn. At
the time the query is launched, the client can ifpec'minimum delta interval’, in thousandths ofsacond.
Whenever a server sends a delta over an activey guitlr an interval defined, it will ensure the neldlta will

not be sent until the interval has expired, withrgkervening changes merged. A graphic client clamose, say,
an interval of a fifth of a second, which is longoegh to allow people to read the values withoutrying

about flicker — yet short enough to appear reatttmthose watching the displays. By choosingmr@priate
minimal delta interval, and ensuring only the datguired is retrieved (e.g., avoiding ‘select *daonly asking
for the columns and rows of relevance to the djjegfficient, scalable and responsive systems egprbduced.

Optimistic Concurrency through Active Queries

As well as keeping clients up to date with changes server, Polyhedra’s active query mechanisro als
provides an effective way for the client to charnle database: it simply has to change the resulbfsthe
active query. When it does so, the client libraijl automatically ask the server to make the cqroesling
changes. Of course, for this to work, the querythdse ‘updateable’ in that it must be unambiguasiso which
record has to be inserted, modified or deleted akarthe database match the modified result seirdatice,
this means the client cannot modify the databasegth active queries involving joins or SQL funcson
Updates done through the active query mechanistid dive use of the SQL engine, which improves efficyy.

Whenever a change request is received by the seaheffirst thing it does is check whether it dais the
optimistic concurrency constraints: basically, thensaction is only accepted for processing if tieeoclient
has made a conflicting change since the last dedtasent. Clearly, the new transaction cannot ahangcord
if something else has just deleted it, but thedaation is also rejected if something else has gddma record
attribute that the client wants to alter. Optingistoncurrency is efficient when transactions axpeeted to
succeed, which is usually the case in embeddedcatiphs.

Updates through active queries can be groupedanger transactions. When the client starts suchresaction,
the server is automatically told (by the clientdity code) to block sending deltas on the activerigs involved
in the transaction. When the client later commitancels the transaction, it will — if necessargeeeive a
merged delta to bring it up to date, but in theeoafsa successful transaction it does not have timlol about the
changes it made!

Monitoring the monitors

Recent editions of Polyhedra have been enhancatlow the database designer to detect when actieeiep
are set up on particular tables. They can do thiadaling records to a configuration table to sayctviables
are of interest; once set up, records are createdspecial table when active queries are estalisin any of
the designated tables, and removed when the quengesancelled. Each of these special records sltowe to
find out details of an individual query, and of tt@nnection used to launch the query. Trigger doddten in

Polyhedra’s trigger language, CL) can be attacheti¢ special table to respond to the creationdmbetion of
records, and can take appropriate action. For ebaritpivould be straightforward to kill any conniect that

tried to launch active queries on a particulard¢abiless the connection was on the same machine:

ENEA

script DataQuery
on create
-- (nb: 2130706433 corresponds to net address 127.0.0.1)
if sourcetable="currency" and \
machine of session = 2130706433 then delet e session
end create
end script

While this particular example may be of limited {(isethe mechanism allows more sophisticated and
meaningful actions. For example, suppose that sofntbe data values are being fed from external asvi
according to some polling schedule, and the poliagedule for a particular point is specified ® database
record. The query monitoring mechanism is suffitiepowerful that it is possible to detect when astive
query is looking at a particular point, and triggede can automatically increase the poll frequencythat
point.

Conclusion

As discussed in this document, Active Queries hramay benefits over traditional solutions:
* No polling, so low latency achieved with less laadthe server
o0 less network traffic
0 Scalability of system improved
o No server load when clients aren't listening
» better handling of overload conditions, more gradiegradation
* No need for separate notification mechanisms
e Clients doing updates are simpler: they don’t riee@ll others about changes
e Clients doing queries are simpler: they are tolédtttas changed
* No need to set up and manage database trigget@@iepagate notification messages

In addition, the bidirectional nature of Active Qias allows an efficient way for clients to upd#te database
on an ongoing basis without involving SQL, and ttlesv mechanism for monitoring the placement of &ctiv
queries allows, for example, polling frequenciesdrternal data sources to be tuned dynamically.

In summary, Active Queries bring an additional gmiverful capability to database developers allowiog
faster program development and greater system mesmmess. By avoiding polling they make the systeone
stable and scalable, and the bidirectional natvogiges an easy way for a client to update theldesta. The
uses for Active Queries are varied and many!

ENEA

Appendix 1: a worked example, using ODBC

We will use the Polyhedra ODBC API to illustrate thse of active queries. This API is available acheof the
platforms on which Polyhedra runs. Active queriaa also be invoked through each of the other AF&sex

by Polyhedra, including JDBC and - for Windows pwrgmers - the OLE DB interface. The example will
concentrate on database monitoring through a siqgézy, but could be readily extended to handletipial
queries.

Rather than jump straight in with the full activeeqy example, we shall take a ‘normal’ program, #meh
extend it to make use of active queries: this afilbw us to see how little needs to be changeddtipathe
technology, and then how easy it is to make mormaptete use of the capabilities on offer. Our startpoint
will be a simple application which connects to @&atlase, queries it, displays the result and stogisus first
look at the code to start ODBC and connect to aluieste accessible via port 8001 on a remote machine:

SQLHENV henv;
SQLHDBC hdbc;
SQLHSTMT hstmt;
/* Allocate an environment handle */
ret = SQLAI | ocHandl e (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
check_success (ret, SQL_HANDLE_ENV, henv,

"Failed to allocate environment handle");
/* Allocate a connection handle */
ret = SQLAI | ocHandl e (SQL_HANDLE_DBC, henv, &hdbc);
check_success (ret, SQL_HANDLE_ENV, henv,

"Failed to allocate connection h andle");
/* Connect to the database */
ret = SQ.Connect (hdbc, (SQLCHAR *)"192.168.1.101:8001",

SQL_NTS, 0, SQL_NTS, 0, SQL_N TS);

check_success (ret, SQL_HANDLE_DBC, hdbc, "Fail ed to connect to the database");

(All ODBC functions start with the lettegQL, and almost all of them take a ‘handle’ as on¢hefparameters,
which can be thought of as a pointer to a datadtite that is owned and maintained by the ODBCalipr
which uses it to store context information. Forritig all ODBC function names in the code snippats
emboldened, Polyhedra-specific extensions willhmeve inred, and comments igreen)

As always when using ODBC, we first establish anvieonment’, and are given an environment handlei¢iv
we will store in the local variableenv); using this handle, we next ask for a connedtiandle (which we store
in hdbc) and then open the connection. The functibeck_success() is here assumed to be a user-written
function that will check if the ODBC library funcin return code indicated an error, and if so wiitaon the
error message by use of th@LGetDiagRec() function, print it, and stop the program.

The key lines establishing a query and printingrésilts could then read something like:

/* Allocate a statement handle */
ret = SQLAI | ocHandl e (SQL_HANDLE_STMT, hdbc, &hstmt);
check_success (ret, SQL_HANDLE_DBC, hdbc, "Fail ed to allocate a statement handle");
/* Execute the query */
ret = SQLExecDi rect (hstmt
, (SQLCHAR *)"select code, us dollar from currency"
, SQL_NTS);
check_success (ret, SQL_HANDLE_STMT, hstmt, "Fa iled to execute statement");
fetch_all_data (hstmt); /* Fetch and display the result set */
(The functiorfetch_all_data() is assumed to be a user-written function that gs@sdard ODBC functions

such asSQLFetchScroll() and SQLGetData() to iterate over the result set and print the coseof each
row).

ENEA

To complete the program, all that is needed is a&erthe appropriate ODBC calls to close the cotimeend

release the handles, and then stop:

SQLFr eeHandl e (SQL_HANDLE_STMT, hstmt);

SQLDI sconnect (hdbc);

SQLFr eeHand| e (SQL_HANDLE_DBC, hdbc);

SQLFr eeHandl e (SQL_HANDLE_ENV, henv);
return O;

To convert this program to one polling the datakss® reporting the results every 5 seconds, onplgineeds

to replace the earlier code snippet that set uptieey and reported the results by the followindeco

/* Allocate a statement handle */
ret = SQLAI | ocHandl e (SQL_HANDLE_STMT, hdbc, &hstmt);
check_success (ret, SQL_HANDLE_DBC, hdbc, "Fail ed to allocate a statement handle");
for (;;)
{ /* Execute the query */
ret = SQLExecDi rect (hstmt
, (SQLCHAR *)"select cod e,usdollar from currency"
, SQL_NTS);
check_success (ret, SQL_HANDLE_STMT, hstmt
, "Failed to execute statement ");
fetch_all_data (hstmt); /* Fetch and display result set */
Sleep (5); /* wait five seconds */
}

To convert this program to one using an active yjuene simply sets a flag on the statement handte o

launching the query, and then move the ca@uExecDirect() outside the loop:

/* Allocate a statement handle */

ret = SQLAI | ocHandl e (SQL_HANDLE_STMT, hdbc, &hstmt);

check_success (ret, SQL_HANDLE_DBC, hdbc

, "Failed to allocate a statement handle");

/* Use dynamic cursor, to signal that the query is active */

ret = SQLSet Stnt Attr (hstmt, SQL_ATTR_CURSOR_TYPE
,(SQLPOINTER)SQL_CURSOR_DY NAMIC, 0);

check_success (ret, SQL_HANDLE_DBC, hdbc, "Fail ed to set dynamic cursor");

[* Execute the query */

ret = SQLExecDi rect (hstmt, (SQLCHAR *)"select code,usdollar from curr ency"
, SQL_NTS);

check_success (ret, SQL_HANDLE_STMT, hstmt, "Fa iled to execute statement");

for (;;)

{ fetch_all_data (hstmt); /* Fetch and display result set */

Sleep (5); /* wait five seconds */
}

Of course, this is wasteful client-side: it wakgsavery 5 seconds even if nothing has changedit suniohts out
the whole result set; if one wanted to report jusat had altered, the client application would heoveompare
the result set with a copy that it had taken. ki unresponsive to changes: the current statelysreported
every 5 seconds. However, it puts a very low loadhe server:

There is no round trip to the server every 5 sespmstead, the Polyhedra client library merelyobise
whether there are any incoming messages, and pescdsem appropriately before allowing the user to
iterate over the result set; and,

If the data is changing rapidly, the server willtine that the client is asleep and will enter delta
merging mode.

ENEA

Waiting for changes

So far, we have used only standard ODBC

calls.tR®@mext step, making the client wait for events, will

need to make use of some Polyhedra extensions ®C0Birst, we shall have to enable the Polyhedenev
mechanism, and then enable events on the query:

/* Enable async event handling */

ret = SQ.Set EnvAttr (henv,
, (SQLPOINTER)

/* Enable async statement events on the query *

ret = SQLSet Stmt Attr (hstmt,
, (SQLPOINTER)

/* optional: set a minimum interval between del

ret = SQLSet Stmt Attr (hstmt,

SQL_ATTR_POLY_ASYNC_EVENTS_ENABLE

SQL_ATTR_POLY_ASYNC_EVENTS_ENABLE

SQL_ATTR_POLY_MINIMUM_DELTA_INTERVAL

SQL_POLY_ASYNC_EVENTS_ENABLE_@N
/

SQL_POLY_ASYNC_EVENTS_ENABLE_,ON
tas, in milliseconds */

, (SQLPOINTER)10, 0);

(For brevity, we have omitted from the above - dnom all subsequent examples — code to call
check_success() after each ODBC function call to see whether itked correctly.)

The names of the forrmQL_ATTR_POLY_..are defined in a supplementary header file sugpdie part of the
Polyhedra release kits. The main loop can now becom

/* Fetch and display initial result set */
fetch_all_data(hstmt);
/* enter the main loop */
for (;;)
{ ret= SQLHandl eMsg (henv);
fetch_all_data (hstmt);
}

(Of course, it is not necessary to have reorgarizedode to have a call fietch_all_data() in front of the
loop as well as inside it — but introducing thiange here will make the next section simpler iod)

/* wait for a delta */
/* Fetch and display result set */

The overall effect of these changes is that thenrt@op is woken up every time there is an incondedfa —
though if changes are occurring really fast, defterging will occur to ensure that deltas are astlekD
milliseconds apart (as specified by $@L_ATTR_POLY_MINIMUM_DELTA_INTERVAstatement parameter).

Being selective

The final refinement is to get the ODBC libraryt&l us what has changed, so that the output camdre
selective. To do this, we first add lines (somewheagdter the call o6QLExecDirect()) to set up variables with
global scope that can be used by the ODBC libargport flags and a bookmark...

SQLULEN Bookmark;
SQLUSMALLINT RowsStatusArray[1];
SQLUSMALLINT ColumnStatusArray[2];

* Buffer for bookmark ~ */
/* Array for row status */
/* Array for column status */

. and then we instruct the ODBC library to use thday inserting the following lines after the cadl t
SQLExecDirect()

ret =
ret =

SQLSet Stmt Attr (hstmt, SQL_ATTR_ROW_STATUS_PTR, RowStatusArray, 0)

SQ.SetsStnt Attr (hstmt, SQL_ATTR_POLY_COLUMN_STATUS_RTR
ColumnStatusArray, 0);

SQ.Set Stnt Attr (hstmt, SQL_ATTR_FETCH_BOOKMARK_PTR, &Bookmark, 0);

ret =

We are now ready to adapt the main loop to makeotisiee bookmark mechanism, with an outer loop and
inner loop (and also an innermost loop to handke dietails of each delta). The outer loop will ddlé

SQLHandleMsg() function to wait for something interesting to happ

10

The inner loop will contain the main code, baseduad a call of the PolyhedraQLGetAsyncEvent()
function to see what events are waiting, and ongaking out of this inner loop when the functiopags all
outstanding events have been processed. In our ttesenain events we expect are an indication losa of
connection, or an incoming delta. (The other paldyitis that the query has failed because it idorger valid,
due to a dynamic change in the schema or the $gquiivileges.) In the case of a delta, the Polybed
SQLGetAsyncStmtEvent() function can be called repeatedly to get infororatibout affected rows.

/* outer loop, handling events */
for (;;)
{ SQLUSMALLINT fnld;
SQLSMALLINT hType;
SQLHANDLE h;
/* inner loop, getting the next event */
while (SQLGet AsyncEvent (henv, &fnld, &hType, &h) == SQL_SUCCESS)
switch (fnld)

{
case SQL_API_SQLDISCONNECT:
/* Database connection lost. Free t he handles, etc and stop */
SQLFr eeHandl e (SQL_HANDLE_STMT, hstmt);
SQLDi sconnect (hdbc);
SQLFr eeHandl e (SQL_HANDLE_DBC, hdbc);
SQLFr eeHandl e (SQL_HANDLE_ENV, henv);

return O;
case SQL_API_SQLFETCH:
/* Data has changed - fetch and dis play modified result set */
while (SQLGet AsyncSt nt Event (hstmt) == SQL_SUCCESS)
fetch_by_bookmark (hstmt);
break;
} /* (end of switch, and of inner loop: 'while') */
ret = SQLHandl eMsg (henv); /* wait for the next batch of work */

} /* (end of outer loop: 'for') */

Each call toSQLGetAsyncStmtEvent() would have left th&ookmark variable pointing at the affected row
in the result set (ready for the client applicatiom place the cursor on the row via a call of
SQLFetchScroll (hstmt, SQL_FETCH_BOOKMARK, 0)); the value inRowStatusArray will flag what
type of change was made to the row, and (in the o&sipdates) the contents @flumnStatusArray]] will
indicate which attributes have a changed valu¢héncase of a row deletion, the earlier-reportddesfor the
record are still accessible to the client applaratio save the user code from having to cactenitscopy. (The
old values for a deleted row are kept until theliapion has moved the cursor off that row, or utite next
delta is received, whichever comes first.)

Thus a possible definition édtch_by_bookmark() , stripped of all error checking, could be:

ENEA

11

void fetch_by bookmark (SQLHSTMT hstmt)

{
SQLRETURN ret;
SQLCHAR code[MAX_STRING_LENGTH];
SQLDOUBLE usd;

SQLLEN len;
ret = SQLFet chScrol | (hstmt, SQL_FETCH_BOOKMARK, 0);
ret = SQLCet Dat a (hstmt, 1, SQL_C_CHAR, &code, MAX_STRING_LENGTH, & len);

switch (RowStatusArray[0])

{
case SQL_ROW_ADDED:

ret = SQLGet Dat a (hstmt, 2, SQL_C_DOUBLE, &usd, 0, &len);
printf ("Row Added - Code: %s, 1 Dollar buys: %If.\n", code, usd);
break;
case SQL_ROW_UPDATED:
if (ColumnStatusArray[2] == SQL_COLUMN_UPDATED /* has USD value changed? */
{
ret = SQLGet Dat a (hstmt, 2, SQL_C_DOUBLE, &usd, 0, &len);
printf ("Code: %s, 1 US Dollar now buys % If\n", code, usd);
break;
case SQL_ROW_DELETED:
printf ("Currency %s removed from resultset\n ", code);
break;
}
}
The Polyhedra release kits and evaluation kitsainrthe source code for a complete applicationcluiing
code forcheck_success() , fetch_all_data() and a more complete versionfefch_by bookmark() -

that was used as the initial source for the codgpsts in this white paper.

The current state of our worked example monitossngle query — so when a delta is received, theneoi
guestion about which active query has been updétesl.straightforward to adapt this example to itmma
number of queries: we would allocate each of thlkair town statement handle and set off the queries [
entering the main loop, and then within tase SQL_API_SQLFETCH clause in the main loop we would use
the contents of the variabieto see which active query had just received adelt

‘Polling’ an active query

In the above example, the call 8QLHandleMsg() suspends the thread until the Polyhedra libratgale
something interesting has happened. In many apiglicg it is more appropriate to have a main loong
other things, and occasionally ‘peek’ at the Potlrhestatus to see if anything has happened. Yowachieve
this by setting a ‘timeout’ on the environment hiand

[ret= SQSetEnvAttr (henv, SQL_ATTR_POLY_EVENT_TIMEOUTSQLPOINTER)3, 0); |

This instructs the Polyhedra library to wait9@LHandleMsg() only for a short time for an incoming event —
in this case for about 3 milliseconds, though iactice the delay may be slightly longer, dependingclock
resolution and granularity. Note that as befors tlies NOT involve a round trip to the server;dgfly all that
will happen is a quick check to see if a messageble@n received or a heartbeat timeout had expired.

ENEA

for more details of the Polyhedt@roducts, please visit www.polyhedra.com or wweaerom/polyhedra, or email us at info@enea.com

E&OE: this technical note is believed to be an accurate desariptithe features and functionality of Polyhédes at the time of writing — but as the product family
undergoes continual improvement the behaviour in areasebby this document is subject to change without noticedthour compatibility principles mean that existing
code will rarely need alteration and existing applications will intexétb new versions of the software).

Enea®, Enea OSE®, Netbricks®, Polyhedra® and Zealcae®registered trademarks of Enea AB and its subsididtiesa OSE®ck, Enea OSE® Epsilon, Enea®
Element, Enea® Optima, Enea® Optima Log Analyzer, EnB&®k Box Recorder, Enea® LINX, Enea® Accelerator, Polyh@dFlashlite, Enea“ dSPEED Platform,

Enea® System Manager, Accelerating Network Convergendstice Software Optimized™ and Embedded for Leadersg™uiaregistered trademarks of Enea AB or its
subsidiaries. Any other company, product or service naneggioned above are the registered or unregistered taakieof their respective owner. © Enea AB 2011

